No Image

Отличие генератора от двигателя

СОДЕРЖАНИЕ
29 просмотров
21 января 2020

Мотор-генератор (нем. Umformer , двигатель-генератор) — электрическая машина для преобразования электрической энергии из одной её формы в другую, либо же, в некоторых случаях, функционирующая как проводник электрической энергии, не производящий в конечном итоге данного преобразования.

  • преобразование постоянного электрического тока в переменный, как правило, более высокого напряжения;
  • получение постоянного тока из переменного для специальных случаев (питание сварочного оборудования, некоторые модели старых электровозов);
  • передача мощности между электросетями разной частоты (50 и 60 Гц, железные дороги с питанием переменным током пониженной частоты).
  • преобразование однофазного тока в трёхфазный.

Чаще всего представляет собой электродвигатель, соединенный валом с электрическим генератором. В конструкцию также вводятся дополнительные устройства для стабилизации выходного напряжения и частоты.

Известны также умформеры с единым якорем (одноякорные преобразователи), в которых обмотки разного рода тока разъединены. Обмотки постоянного тока выводятся на коллектор, а переменного — на контактные кольца.

Есть также машины с общими обмотками для разного рода тока. В случае преобразования числа фаз даже нет нужды в коллекторе или скользящих контактах. В этом случае вся обмотка навивается на статоре и в нужном месте делаются отпайки. Таким образом, например, асинхронная машина может преобразовывать одно- или двухфазный ток в любой многофазный (например — 3-фазный). Пример такой машины — фазорасщепитель электровозов ВЛ60, ВЛ80, ВЛ85 [1] , а также ЭП1М, 2ЭС5К и 3ЭС5К новых выпусков [2] .

Содержание

Применения [ править | править код ]

Принцип действия умформера может применяться для преобразования:

  • рода тока;
  • напряжения;
  • частоты;
  • числа и смещения фаз.

Широко использовались в авиационной, танковой и ракетной технике СССР вплоть до 1970-х годов, в частности, для питания ламповых устройств. В частности, на отечественной авиационной технике чрезвычайно распространены однофазные (серии ПО — преобразователь однофазный) и трёхфазные (серии ПТ) преобразователи, питающиеся постоянным напряжением 27 В, например, ПО-600, выдающий однофазное напряжение 127 В, 50 Гц, ПТ-1000, выдающий трёхфазное напряжение 36 В, 400 Гц, ПО-4500 выходной мощностью 4,5 кВА, напряжением 115 В, частотой 400 Гц [3] . Похожие преобразователи установлены на пассажирских вагонах выпусков 1950—1970-х годов, например, ППО-2-400У4 и MB12, преобразующие 50 В постоянного тока в 220 В, 400—425 Гц для питания люминесцентных светильников, или маломощные преобразователи, вырабатывающие 127 В, 50 Гц для питания электробритв [4] .

Умформеры использовались в системах электрического питания ЭВМ первого поколения. В военной технике СССР, работавшей от собственного 400-герцового генератора, умформер ставили в месте стационарной установки, чтобы запитать от промышленной сети.

Умформеры (мотор-генераторы) применяются на трамваях, троллейбусах с косвенной системой управления, электровозах и электропоездах постоянного тока [5] для получения низкого напряжения (24 и 50 В соответственно), питающего цепи управления. На некоторых старых моделях подъёмных кранов, например, КС-5363 и канатных экскаваторов с дизель-электрическим приводом постоянного тока наряду с ДВС для привода генератора предусмотрен электродвигатель переменного тока для работы от внешней сети. В 1980—1990-х годах на городском электротранспорте были вытеснены статическими полупроводниковыми преобразователями на тиристорах (ТЗУ), а позже — на транзисторах.

Достоинства и недостатки [ править | править код ]

К достоинствам можно отнести:

  • гальваническую развязку входной и выходной цепей;
  • получение на выходе почти идеального синусоидального напряжения, без шумов, связанных с работой других потребителей сети;
  • простоту устройства и его обслуживания;
  • возможность получения на выходе трёхфазного напряжения без существенного усложнения конструкции;
  • фильтрация бросков тока при резком изменении нагрузки или кратковременном отключении питающего напряжения за счёт инерции ротора;
  • простота рекуперации энергии.
  • сравнительно низкий ресурс по причине наличия движущихся частей;
  • высокая масса и стоимость за счет материалоёмкости конструкции;
  • вибрация и шум;
  • необходимость технического обслуживания (смазка подшипников, чистка коллекторов, замена щёток в коллекторных машинах);
  • низкий КПД, как правило, 50 —70 %, из-за двойного преобразования энергии. [6]
Читайте также:  Как снять переднее сиденье рено меган 2

В настоящее время [ править | править код ]

В настоящее время вытеснен из мобильных применений твердотельными преобразователями, а также более широким использованием низковольтной аппаратуры.

По-прежнему выгодно применение в промышленности и энергетике для преобразования сравнительно больших мощностей. Перспективно применение умформеров на основе машин двойного питания для передачи мощностей между сетями 50 и 60 Гц, а также между сетью с низкими параметрами напряжения и частоты и сетью с особо высокими требованиями. В этом случае для питания обмоток ротора применяется ещё и статический преобразователь частоты, но мощность преобразователя нужна меньшая (для приведённого примера преобразования 50 в 60 Гц это составляет около 1/5 полной мощности).

Рис. 10.1. Принципиальная схема генератора

Рис. 10.2. Принципиальная схема электродвигателя.

Если в магнитное поле поместить проводник с током в виде замкнутой рамки (рис. 10.2), то под действием сил, приложенных к сторонам рамки, она придет во вращение. Таким образом, проводник с током в магнитном поле можно рассматривать как элементарный электрический двигатель.

У большинства электрических машин магнитное поле создается не постоянным .магнитом, а электрическим током, протекающим по специальным катушкам машины. Эти катушки называют обмотками возбуждения.

Электрическая схема электрических машин состоит из неподвижных и подвижных обмоток.

Электрические машины являются машинами вращательного действия. Основными частями их являются: неподвижный статор и вращающийся ротор, разделенные зазором (рис. 10.3).

Статор и ротор имеют стальные сердечники. Сердечник набран из изолированных друг от друга листов электротехнической стали. На внутренней стороне сердечника статора и на наружной стороне сердечника ротора имеются параллельные продольные пазы, в которые укладываются обмотки. Ротор закрепляется на валу, который вращается в подшипниках. Подшипники встроены в торцовые крышки, которые болтами крепятся к станине. На валу ротора устанавливается также вентилятор, служащий для охлаждения обмоток и сердечников.

Станина имеет лапы для крепления машины к фундаменту или специальный фланец с отверстиями под крепления.

Рис. 10.3. Конструктивная схема электрических машин.

Асинхронные двигатели. Асинхронные двигатели состоят из двух основных частей: статора и ротора. На статоре располагается трехфазная обмотка (у трехфазных двигателей). Концы обмоток присоединяют к питающей сети. Обмотка имеет шесть выводных концов с металлическими бирками, расположенных в коробке и имеющих обозначение начал трехфазной обмотки С1, С2, СЗ и концов С4, С5, Сб. Ротор также имеет обмотку. В зависимости от типа обмотки асинхронные электродвигатели бывают с короткозамкнутым и с фазным ротором.

В короткозамкнутом роторе обмотка представляет собой цилиндрическую клетку, образованную отдельными стержнями, уложенными в пазы ротора и соединенными с торцовых сторон кольцами («беличье колесо»).

Обмотка фазного ротора выполнена изолированным проводом и уложена в пазы ротора. Как и обмотка статора, она состоит из трех (или группы) катушек. Начала катушек соединены в звезду, а концы подведены к контактным кольцам на валу ротора. По кольцам скользят щетки, закрепленные в неподвижных щеткодержателях. Щетки соединяют обмотку ротора с реостатом, находящимся вне двигателя и служащим для уменьшения пусковых токов или регулирования скорости вращения.

Электродвигатели с короткозамкнутым ротором применяют в электроприводе, не требующем регулирования скорости. Основным недостатком их является большая сила тока в момент пуска двигателя, превышающая в 5…7 раз ток при установившихся оборотах.

Двигатели с фазным ротором позволяют регулировать скорость вращения. Кроме того, включение в цепь ротора пускорегулирующе- го реостата позволяет уменьшить силу пускового тока и увеличить пусковой момент.

Читайте также:  То 3 тигуан перечень работ

Каждый двигатель снабжается паспортом — металлической табличкой, закрепляемой на корпусе двигателя, на которой указывается завод-изготовитель, марка двигателя и основная характера стика двигателя.

Если в паспорте указано напряжение 220/380 В, то электродвигатель можно включать в сеть напряжением 220 и 380 В.

При напряжении 220 В обмотки статора соединяют треугольником (рис. 10.4, а) —начало первой обмотки С1 соединяют с концом третьей С6, начало второй С2 с концом первой С4, а конец второй С5 с началом третьей СЗ. Соединенные концы подводят к трем фазам сети.

Рис. 10.4. Схемы соединения обмоток статора трехфазного двигателя.

При напряжении 380 В обмотки соединяют звездой (рис. 10.4, б, в) — все начала или все концы обмоток соединяют вместе, а свободные концы включают в трехфазную сеть.

Двигатели постоянного тока применяют в тех случаях, когда требуется плавное и глубокое регулирование скорости вращения.

Двигатель постоянного тока (рис. 10.5) состоит из неподвижной станины, вращающегося якоря с коллектором и щеток со щеткодержателями. Внутри станины укрепляют главные полюсы с обмотками возбуждения, которые создают магнитный поток. Стержни обмотки якоря соединены по определенной схеме с пластинами коллектора. Щетки, скользящие по пластинам коллектора, соединяют обмотку якоря с внешней сетью. С внешней сетью соединяется также обмотка возбуждения;

Для уменьшения искрения на коллекторе на станине установлены дополнительные полюса.

Регулирование частоты вращения ротора достигается изменением силы тока обмотки возбуждения. Обмотки возбуждения двигателей постоянного тока питаются постоянным током. Различают двигатели с независимым возбуждением и с самовозбуждением. В двигателях с независимым возбуждением обмотка возбуждения питается от постороннего источника. В машинах же с самовозбуждением она питается от якорной обмотки этого же двигателя. Возбуждение при этом может осуществляться при параллельном, последовательном или смешанном соединениях, когда одна обмотка возбуждения соединена с якорной параллельно, а другая — последовательно. Соответственно этому электродвигатели называются шунтовые, сериесные и ком- паундные.

Все электрические машины характеризуются обратимостью, т. е. возможностью работать как в качестве электродвигателя, так и в качестве генератора.

Рис. 10.5. Электродвигатель постоянного тока:
1 — коллектор; 2 — щеткодержатель; 3 — якорь; 4 — главный полюс; 5 — обмотка возбуждения; 6 — станина; 7 — подшипниковый щит; 8 — вентилятор; 9 — обмотка якоря.

Генератор устроен принципиально так же, как и электродвигатель. В отличие от него в генераторе принудительно вращается ротор (якорь). С помощью генератора механическая энергия вращающегося якоря превращается в электрическую. Подобно электродвигателям, генераторы бывают переменного и постоянного тока. Генераторы постоянного тока бывают шунтовые, сериесные и компаундные.

Пенсионер мастерит ветряки и экономит на электроэнергии

Пенсионер из Амурской области решил в одиночку бороться с повышением тарифов на электроэнергию. Желание сделать почти невозможное возникло после того, как пришли очередные счета за коммунальные услуги.

Тогда бывший энергетик составил собственный план электрификации всего участка. Теперь наверху крутятся лопасти, внизу загораются лампочки. О том, как ветер принёс перемены

Асинхронный электродвигатель в качестве генератора

Работа асинхронного электродвигателя в генераторном режиме

В статье рассказано о том, как построить трёхфазный( однофазный ) генератор 220/380 В на базе асинхронного электродвигателя переменного тока.

Трехфазный асинхронный электродвигатель, изобретённый в конце 19-го века русским учёным-электротехником М.О. Доливо-Добровольским, получил в настоящее время преимущественное распространение и в промышленности, и в сельском хозяйстве, а также в быту. Асинхронные электродвигатели–самые простые и надёжные в эксплуатации. Поэтому во всех случаях, когда это допустимо по условиям электропривода и нет необходимости в компенсации реактивной мощности, следует применять асинхронные электродвигатели переменного тока.

Читайте также:  Рулевые наконечники gmb отзывы

Различают два основных вида асинхронных двигателей: с короткозамкнутым ротором и с ф азным ротором . Асинхронный короткозамкнутый электродвигатель состоит из неподвижной части – статора и подвижной части – ротора, вращающегося в подшипниках, укреплённых в двух щитах двигателя. Сердечники статора и ротора набраны из отдельных изолированных один от другого листов электротехнической стали. В пазы сердечника статора уложена обмотка, выполненная из изолированного провода. В пазы сердечника ротора укладывают стержневую обмотку или заливают расплавленный алюминий. Кольца-перемычки накоротко замыкают обмотку ротора по концам (отсюда и название – короткозамкнутый). В отличие от короткозамкнутого ротора, в пазах фазного ротора размещают обмотку, выполненную по типу обмотки статора. Концы обмотки подводят к контактным кольцам, укреплённым на валу. По кольцам скользят щетки, соединяя обмотку с пусковым или регулировочным реостатом. Асинхронные электродвигатели с фазным ротором являются более дорогостоящими устройствами, требуют квалифицированного обслуживания, менее надёжны, а потому применяются только в тех отраслях производства, в которых без них обойтись нельзя. По этой причине они мало распространены, и мы их в дальнейшем рассматривать не будем.

По обмотке статора, включенной в трехфазную цепь, протекает ток, создающий вращающее магнитное поле. Магнитные силовые линии вращающегося поля статора пересекают стержни обмотки ротора и индуктируют в них электродвижущую силу (ЭДС). Под действием этой ЭДС в замкнутых накоротко стержнях ротора протекает ток. Вокруг стержней возникают магнитные потоки, создающие общее магнитное поле ротора, которое, взаимодействуя с вращающим магнитным полем статора, создает усилие, заставляющее ротор вращаться в направлении вращения магнитного поля статора. Частота вращения ротора несколько меньше частоты вращения магнитного поля, создаваемого обмоткой статора. Этот показатель характеризуется скольжением S и находиться для большинства двигателей в пределах от 2 до 10%.

В промышленных установках наиболее часто используются трёхфазные асинхронные электродвигатели , которые выпускают в виде унифицированных серий. К ним относится единая серия 4А с диапазоном номинальной мощности от 0,06 до 400 кВт, машины которой отличаются большой надёжностью, хорошими эксплуатационными качествами и соответствуют уровню мировых стандартов.

Автономные асинхронные генераторы – трёхфазные машины, преобразующие механическую энергию первичного двигателя в электрическую энергию переменного тока. Их несомненным достоинством перед другими видами генераторов являются отсутствие коллекторно-щеточного механизма и, как следствие этого, большая долговечность и надежность. Если отключенный от сети асинхронный двигатель привести во вращение от какого-либо первичного двигателя, то в соответствии с принципом обратимости электрических машин при достижении синхронной частоты вращения, на зажимах статорной обмотки под действием остаточного магнитного поля образуется некоторая ЭДС. Если теперь к зажимам статорной обмотки подключить батарею конденсаторов С, то в обмотках статора потечёт опережающий ёмкостный ток, являющийся в данном случае намагничивающим. Ёмкость батареи С должна превышать некоторое критическое значение С0, зависящее от параметров автономного асинхронного генератора: только в этом случае происходит самовозбуждение генератора и на обмотках статора устанавливается трёхфазная симметричная система напряжений. Значение напряжения зависит, в конечном счёте, от характеристики машины и ёмкости конденсаторов. Таким образом, асинхронный короткозамкнутый электродвигатель может быть превращен в асинхронный генератор.

Стандартная схема включения асинхронного электродвигателя в качестве генератора.

Можно подобрать емкость так, чтобы номинальное напряжение и мощность асинхронного генератора равнялись соответственно напряжению и мощности при работе его в качестве электродвигателя.

В таблице 1 приведены емкости конденсаторов для возбуждения асинхронных генераторов (U=380 В, 750….1500 об/мин). Здесь реактивная мощность Q определена по формуле:

Комментировать
29 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Автомобили
0 комментариев
No Image Автомобили
0 комментариев
No Image Автомобили
0 комментариев
No Image Автомобили
0 комментариев
Adblock detector