No Image

Электронный стетоскоп своими руками

СОДЕРЖАНИЕ
33 просмотров
21 января 2020

Недавно мне показалось, что в моем двигателе стали происходить какие то посторонние шумы. Как выяснить? И перестать беспокоится и начать жить 🙂 или сразу преступить к ремонту. Для подобных целей используется автомобильный стетоскоп. Купить его у нас просто не реально, хорошо если продавец вообще в курсе что это такое. Решено было сделать самому. Для этого нам понадобиться:

Сам медицинский стетоскоп, продается в любой аптеке.

Сначала изготовим мембрану, я брал оцинкованное железо 0.4мм. Делаем из него круг равный большему диаметру ППР вставке в американку. В центре сверлим отверстие 4мм. Затем на спице срезаем шляпку и нарезаем резьбу 4мм. Собираем как на рисунке ниже, в такой последовательности: гайка-шайба-мембрана-резиновая прокладка-гайка-шайба.

Далее нужно срезать широкую часть ППР американки и расточить по внутреннему диаметру (белое кольцо в центре):

Собираем как на рисунках ниже:

Для соединения штуцера с американкой использовал в качестве подмотки ленту фум.
После сборки нужно проверить герметичность, дуем в штуцер воздух либо вовсе на должен выходить, либо с большим трудом.

Вот так это выглядит в законченном виде:

Двигатель слышно очень хорошо, любые скрипы и шумы. А мои опасения к счастью не подтвердились.

Стетоскоп используется врачами для измерения сердцебиения. В технологически развитом 21 веке на смену классических стетоскопов приходят электронные. В этом материале будет представлен обзор видеоролика по самостоятельному изготовлению такого стетоскопа.

А начать советуем с просмотра авторского видеоролика

Что же нам понадобится:
– обычный стетоскоп;
– капсульный микрофон;
– записывающее устройство со входом для микрофона;
– дрель или шуруповерт.

Хорошо известен простой и распространенный медицинский прибор, традиционно и привычно висящий на шее практически каждого врача-терапевта – это стетофонендоскоп, называемый чаще просто как фонендоскоп или стетоскоп. Им можно прослушать сердце и легкие, а можно, при необходимости, и какое-либо механическое устройство в процессе его работы, например, механический станок, двигатель и т.д. Полезный прибор.

Но. Кроме медиков и механиков, к сожалению, этим же замечательным акустическим прибором успешно пользуются и те, кто прослушивают стенки, полы и потолки в офисах, частных домах и квартирах. Однако интересуют их совсем НЕ стенки, а то, что ЗА стенкой.

И делают это они не только из желания узнать подробности очередного семейного скандала у соседей.

Особенно просто подобное любопытство удовлетворяется в случае стен, а также полов, потолков и т.д. изготовленных из железобетонных панелей. Хотя, надо отметить, и кирпичные стенки не всегда являются надежным препятствием для подобного, акустического и безэлектронного способа получения информации.

Кстати, нет друзей среди медиков – сгодится такой простой и известный прибор как . стеклянный стакан. Тонкий стакан – неплохой акустический резонатор. Пользоваться им – и лучше, и комфортнее, и удобнее, чем неподвижно сидеть у стенки, просто прижав к ней любопытное ухо. Конечно, со стаканом – приятнее: все-таки технический прибор, хотя и без уже привычной электроники.

Читайте также:  Сабвуфер стал тише играть

Однако следует отметить, что лучше чай в стакане, а не ухо.

Упомянутые выше акустические приборы – фонендоскоп и стакан-резонатор дают хорошие эффекты, но, конечно, фонендоскоп лучше. Но подобные приборы требуют постоянного присутствия "пользователя”. Это создает некоторые трудности и вносит определенные ограничения в такой способ получения информации.

К большому сожалению, для обладателей ценной информации у данной проблемы есть достаточно простое и сравнительно дешевое решение.

Речь идет о применении в качестве микрофонов чувствительных к вибрациям элементов – пьезокристаллов. Это могут быть пьезоэлементы, например, из обычных звукоснимателей для проигрывателей уже устаревших, виниловых пластинок – ГЗП-308 и др. Это могут быть пьезоизлучатели, например, от электронных часов, игрушек и т.д. – ЗП-1, ЗП-22 и др.

Используя подобные элементы и чувствительные, малошумящие усилители (УНЧ) с соответствующим входным сопротивлением (рис. 1 – 3) можно обойтись и без прикладывания уха к стене – непосредственно, через стакан или пользуясь фонендоскопом. Для реализации возможностей указанных элементов необходимо приклеить такой кристалл к стене эпоксидным клеем и подключить данный кристалл к усилителю короткими проводами. Получается прибор с неплохими качественными характеристиками – микрофон-стетоскоп. Оказывается железобетонные стены в панельном доме, а также тонкие кирпичные, очень хорошо передают звуки из соседних комнат и не препятствуют такому способу получения звуковой информации.

В составе микрофонов-стетоскопов лучше использовать большие и плоские пьезокристаллы.

Схемы простых стетоскопов на ОУ

На рисунке 1 представлена схема простого УНЧ с высоким входным сопротивлением и двойным источником питания. Источником сигнала служит пьезоэлемент или пьезоизлучатель. Микрофон-стетоскоп.

R4С4, С2, С3 обеспечивают устойчивость УНЧ (на ВЧ). Конденсаторы С2, СЗ размещают максимально близко к ОУ.

Рис.1. Схема простого УНЧ с высоким входным сопротивлением и двухполярным источником питания. (Микрофон-стетоскоп).

Элементы для схемы на рисунке 1 :

  • R1=100к-1м (регулировка громкости),
  • R2=10к-20к (регулировка чувствительности),
  • R3=1м-2м, R4=10;
  • С1 =0.1 мкФ – 1.0мкФ, С2=0.1 мкФ – 0.ЗмкФ, С3=0.1 мкФ-0.ЗмкФ, С4=0.1 мкФ;
  • А1 – ОУ – 140УД12, 140УД20, 140УД8 или любые другие ОУ с внутренней коррекцией;
  • Т1, Т2 – КТ3102, КТ3107 или КТ315, КТ361, или аналогичные комплементарные (парные) транзисторы;
  • В1 – пьезоэлемент ГЗП-308, ПЭ-1 или аналогичные;
  • В2 – пьезоизлучатель ЗП-1, ЗП-22 или аналогичные.
  • Т – ТМ-2А или аналогичные.
Читайте также:  Интернет н что означает

На рисунке 2 представлена схема простого УНЧ с высоким входным сопротивлением и одним источником питания. Источником сигнала служит пьезоэлемент или пьезоизлучатель. Микрофон-стетоскоп.

R4С4, С2 обеспечивают устойчивость УНЧ (на ВЧ). Конденсатор С2 размещают максимально близко к ОУ.

Рис. 2. Схема простого УНЧ с высоким входным сопротивлением и однополярным источником питания. (Микрофон-стетоскоп).

Элементы для схемы на рисунке 2 :

  • R1=100к-1м (регулировка громкости),
  • R2=10к-20к (регулировка чувствительности),
  • R3=1 м-2м, R4=10, R5=136=1 м-2м;
  • С1 =0.1 мкФ – 1.0мкФ, С2=0.1 мкФ – 0.ЗмкФ,
  • С3 – отсутствует, С4=0.1мкФ, С5=0.1 мкФ-1 .ОмкФ;
  • А1 – ОУ – 140УД8, 140УД12, 140УД20 или любые другие ОУ с внутренней коррекцией (желательно) и в типовом включении;
  • Т1, Т2 – КТ3102, КТ3107 или КТ315, КТ361, или аналогичные комплементарные (парные) транзисторы;
  • В1 – пьезоэлемент ГЗП-308, ПЭ-1 или аналогичные ;
  • В2 – пьезоизлучатель ЗП-1, ЗП-22 или аналогичные ;
  • Т – ТМ-2А или аналогичные.

На рисунке 3 представлена схема УНЧ с высоким входным сопротивлением, двойным источником питания и корректором АЧХ. Источником сигнала служит пьезоэлемент или пьезоизлучатель. Микрофон-стетоскоп с достаточно высокими параметрами!

Первый каскад УНЧ (ОУ А1) обеспечивает предварительное усиление сигнала и согласование с корректором АЧХ (темброблок или эквалайзер). После корректора и регулятора громкости сигнал подается на усилитель мощности на ОУ А2 и Т1 и Т2. На выходе – телефон или динамический громкоговоритель (Т1 и Т2 – КТ502 и КТ503).

R8С4, С5, С6, С7, С8 обеспечивают устойчивость УНЧ (на ВЧ). Конденсаторы С5, С6, С7, С8 размещают максимально близко к ОУ. С2, R5 обеспечивают гальваническую развязку между ОУ А2 и предыдущей схемой. Это минимизирует разбаланс нуля на выходе ОУ А2.

Подключение датчика к УНЧ осуществляется с помощью экранированного провода.

Рис. 3. Схема простого УНЧ с высоким входным сопротивлением, двухполярным источником питания и корректором АЧХ. (Микрофон-стетоскоп).

Элементы для схемы на рисунке 3 :

  • R1=100к-1м, R2=10к-20к (регулировка чувствительности),
  • R3=100к-200к,
  • R4=5к-100к (регулировка громкости),
  • R5=100к-1 м (R5>>R4),
  • R6=10к-20к (регулировка чувствительности),
  • R7=100к-200к, R8=10;
  • С1 =0.1 мкФ-1.0мкФ, С2=0.1 мкФ-1.0мкФ, С3=0.1 мкФ-1.0мкФ,
  • С4=0.1 мкФ, С5=0.1мкФ-0.3мкФ, С6=0.1мкФ-0.3мкФ,
  • С7=0.1 мкФ-0.ЗмкФ, С8=0.1мкФ-0.3мкФ;
  • А1 – ОУ – 140УД8, 140УД12, 140УД20 или любые другие ОУ с внутренней коррекцией (желательно) и в типовом включении;
  • Т1, Т2 – КТ3102, КТ3107 или КТ315, КТ361, или аналогичные комплементарные (парные) транзисторы;
  • В1 – пьезоэлемент ГЗП-308, ПЭ-1 или аналогичные ;
  • В2 – пьезоизлучатель ЗП-1, ЗП-22 или аналогичные ;
  • Т – ТМ-2А или аналогичные.

Тот же эксперимент можно повторить, но уже с оконным стеклом. В данном случае пьезокристалл крепится к стеклу. При этом для обеспечения скрытности пьезокристалл крепится к стеклу близко у рамы! Прикрепить его к стеклу можно и со стороны улицы. При этом хорошо слышно все, что происходит в комнате.

Читайте также:  Уплотнительное кольцо приемной трубы рено логан

Неплохо слышно даже если прикрепить кристалл к внешнему стеклу в случае двойной рамы. Даже двойная рама не защищает полностью! И можно поверить, что при использовании пьезокристалла относительно большой площади (1-2 кв. см), малошумящего и чувствительного усилителя звук будет достаточно громким и отчетливым.

Аналогичный опыт может быть проведен со столом. Оказывается, традиционная ДСП-плита стола с прикрепленным пьезокристаллом может быть прекрасным микрофоном, обеспечивающим хорошее качество звука. Больше площадь поверхности стола, обычно сделанного на основе ДСП-плиты, – выше качество звука.

Стетоскоп с дистанционным датчиком

Для данных опытов провод, соединяющий кристалл с усилителем, должен быть, конечно, экранированным. При его длине более 50 см лучше воспользоваться малошумящим усилителем с дифференциальным входом (рисунок 4).

На рисунке 4 (а) представлена схема УНЧ с дифференциальным входом, высоким входным сопротивлением, двойным источником питания и корректором АЧХ.

Источником сигнала служит пьезоэлемент или пьезоизлучатель. Микрофон-стетоскоп с достаточно высокими параметрами! Первый каскад УНЧ (ОУ А1) обеспечивает предварительное усиление сигнала при ослаблении синфазной составляющей помехи, а также согласование с корректором АЧХ (регуляторы тембра и эквалайзеры).

После корректора АХЧ и последующего регулятора громкости сигнал подается на усилитель мощности на ОУ А2 и Т1 и Т2. На выходе – телефон или динамический громкоговоритель (Т1 и Т2 – КТ502 и КТ503). R8С4, С5, С6, С7, С8 обеспечивают устойчивость УНЧ.

Конденсаторы С5, С6, С7, С8 размещают максимально близко к ОУ. С2, 135 обеспечивают гальваническую развязку между ОУ А2 и предыдущей схемой. Это минимизирует разбаланс нуля на выходе ОУ А2.

Для обеспечения корректной работы дифференциального усилителя необходимо выполнить условие R1=R2, R3=R4 (или точнее R3/R1=R4/ R2) с максимальной точностью (1%, 0.1% и т.д.): чем точнее, тем лучше.

Для обеспечения необходимого баланса рекомендуется один из резисторов выполнить переменным, в качестве такого переменного резистора целесообразно использовать высокоточный резистор-подстроечник с внутренним редуктором. Подключение датчика к УНЧ осуществляется с помощью витой пары в экране.

Рис.4. Схема простого УНЧ с высоким входным сопротивлением, дифференциальным входом, 2-полярным источником питания, корректором АЧХ (а) и подключением удаленного пьезодатчика (б). (Микрофон-стетоскоп).

Элементы для схемы на рисунка 4, а :

  • R1 = R2=100к-500к, RЗ= R4=1м-5м,
  • R0=5к-100к (регулировка громкости),
  • R5=100к-1 м (R5 PCBWay – всего $5 за 10 печатных плат, первый заказ для новых клиентов БЕСПЛАТЕН
  • Сборка печатных плат от $88 + БЕСПЛАТНАЯ доставка по всему миру + трафарет
  • Онлайн просмотрщик Gerber-файлов от PCBWay!

Комментировать
33 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Автомобили
0 комментариев
No Image Автомобили
0 комментариев
No Image Автомобили
0 комментариев
No Image Автомобили
0 комментариев
Adblock detector